Prefácio
EUÉ do conhecimento comum entre os matemáticos que grande parte da álgebra moderna tem suas raízes na questão da solubilidade de equações por radicais. O objetivo deste texto é fornecer aos alunos de graduação em matemática e aos futuros professores de matemática do ensino médio uma introdução de um semestre à álgebra moderna que mantém essa relação em vista o tempo todo.
A maioria dos textos de álgebra modernos emprega uma estratégia axiomática que começa com grupos abstratos e termina com corpos, ignorando a questão da solubilidade de equações por radicais. Em contraste, seguimos a trilha do papel desde a solução renascentista da equação cúbica até a descrição de Galois de suas ideias. No processo, todos os conceitos importantes são encontrados, cada um de maneira bem motivada.
Um ano de cálculo fornece todas as informações necessárias para a compreensão de todos os tópicos deste texto, que tem muitos diferenciais:
Desenvolvimento histórico. Os alunos preferem saber as verdadeiras razões subjacentes à criação das estruturas matemáticas que encontram. Eles também gostam de estar em contato direto com as obras dos principais impulsionadores da matemática. Este texto tenta trazê-los o mais próximo possível da fonte.
Grupos e corpos finitos estão enraizados em algumas investigações específicas de Lagrange, Gauss, Cauchy, Abel e Galois sobre a solubilidade de equações por radicais. Este texto torna essas conexões explícitas. A prova de Gauss da construtibilidade do polígono regular de 17 lados é incorporada ao desenvolvimento, e o argumento apresentado é apenas uma paráfrase do que aparece nas Disquisitiones. Da mesma forma, a prova do Teorema 8.10 é apenas uma reorganização daquela dada por Abel em seu artigo sobre a equação quíntica. A construção dos campos de Galois é realizada na forma de um comentário nas páginas iniciais do artigo de Galois Sobre a Teoria dos Números, que são citados literalmente no texto. Vários documentos importantes também estão incluídos como apêndices.
Número de páginas | 447 |
Edição | 1 (2022) |
Idioma | Português |
Tem algo a reclamar sobre este livro? Envie um email para atendimento@clubedeautores.com.br
Faça o login deixe o seu comentário sobre o livro.